Abstract

This paper firstly presents necessary and sufficient conditions for the solvability of discrete time, mean-field, stochastic linear-quadratic optimal control problems. Secondly, the optimal control within a class of linear feedback controls is investigated using a matrix dynamical optimization method. Thirdly, by introducing several sequences of bounded linear operators, the problem is formulated as an operator stochastic linear-quadratic optimal control problem. By the kernel-range decomposition representation of the expectation operator and its pseudo-inverse, the optimal control is derived using solutions to two algebraic Riccati difference equations. Finally, by completing the square, the two Riccati equations and the optimal control are also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.