Abstract
Densification kinetics and stress development during constrained sintering of a silver film on a rigid silicon substrate have been studied. Compared with free sintering, the sintering of constrained silver film exhibits a much lower densification and slower densification kinetics. The densification‐controlled mechanism changes from fast grain‐boundary diffusion kinetics for free sintering to slow lattice diffusion kinetics for constrained sintering. The in‐plane tensile stress developed during constrained sintering of silver film, measured using a noncontact laser‐scanning optical system, increases rapidly to a maximum level of 1.0–1.5 MPa initially, gradually decreases, and then becomes constant at 0.8–1.0 MPa. The maximum stress observed increases with increasing sintering temperature as a result of the faster densification rate. It is believed that the retardation of densification kinetics of constrained silver film is caused by a change in densification mechanism and the existence of in‐plane tensile stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.