Abstract

Rule-based traditional motion planning methods usually perform well with prior knowledge of the macro-scale environments but encounter challenges in unknown and uncertain environments. Deep reinforcement learning (DRL) is a solution that can effectively deal with micro-scale unknown and uncertain environments. Nevertheless, DRL is unstable and lacks interpretability. Therefore, it raises a new challenge: how to combine the effectiveness and overcome the drawbacks of the two methods while guaranteeing stability in uncertain environments. In this study, a multi-constraint and multi-scale motion planning method is proposed for automated driving with the use of constrained reinforcement learning (RL), named RLTT, and comprising RL, a topological reachability analysis used for vehicle path space (TPS), and a trajectory lane model (TLM). First, a dynamic model of vehicles is formulated; then, TLM is developed on the basis of the dynamic model, thus constraining RL action and state space. Second, macro-scale path planning is achieved through TPS, and in the micro-scale range, discrete routing points are achieved via RLTT. Third, the proposed motion planning method is designed by combining sophisticated rules, and a theoretical analysis is provided to guarantee the efficiency of our method. Finally, related experiments are conducted to evaluate the effectiveness of the proposed method; our method can reduce 19.9% of the distance cost in the experiments as compared to the traditional method. Experimental results indicate that the proposed method can help mitigate the gap between data-driven and traditional methods, provide better performance for automated driving, and facilitate the use of RL methods in more fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.