Abstract

Recent experiments on twisted bilayer graphene show the urgent need for establishing a low-energy lattice model for the system. We use the constrained random phase approximation to study the interaction parameters of such models, taking into account screening from the moir\'e bands left outside the model space. Based on an atomic-scale tight-binding model, we numerically compute the polarization function and study its behavior for different twist angles. We discuss an approximation scheme which allows us to compute the screened interaction, in spite of the very large number of atoms in the unit cell. We find that the polarization has three different momentum regimes. For small momenta, the polarization is quadratic, leading to a linear dielectric function expected for a two-dimensional dielectric material. For large momenta, the polarization becomes independent of the twist angle and approaches that of uncoupled graphene layers. In the intermediate-momentum regime, the dependence on the twist angle is strong. Close to the largest magic angle the dielectric function peaks at a momentum of $1/(4\phantom{\rule{4.pt}{0ex}}\text{nm})$, attaining values of 18--25, depending on the exact model, meaning very strong screening at intermediate distances. We also calculate the effective screened Coulomb interaction in real space and give estimates for the on-site and extended interaction terms for the recently developed hexagonal-lattice model. For freestanding twisted bilayer graphene, the effective interaction decays slower than $1/r$ at intermediate distances $r$, while it remains essentially unscreened at large enough $r$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.