Abstract
The random-force (Larkin) model of a directed elastic string subject to quenched random forces in the transverse directions has been a paradigm in the statistical physics of disordered systems. In this Brief Report, we investigate a modified version of the above model where the total transverse force along the polymer contour and the related total torque, in each realization of disorder, vanish. We discuss the merits of adding these constraints and show that they leave the qualitative behavior in the strong stretching regime unchanged, but they reduce the effects of the random force by significant numerical prefactors. We also show that a transverse random force effectively makes the filament softer to compression by inducing undulations. We calculate the related linear compression coefficient in both the usual and the constrained random-force model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.