Abstract

In this paper, we study an optimal mean-variance investment-reinsurance problem for an insurer (she) under the Cramér–Lundberg model with random coefficients. At any time, the insurer can purchase reinsurance or acquire new business and invest her surplus in a security market consisting of a risk-free asset and multiple risky assets, subject to a general convex cone investment constraint. We reduce the problem to a constrained stochastic linear-quadratic control problem with jumps whose solution is related to a system of partially coupled stochastic Riccati equations (SREs). Then we devote ourselves to establishing the existence and uniqueness of solutions to the SREs by pure backward stochastic differential equation (BSDE) techniques. We achieve this with the help of approximation procedure, comparison theorems for BSDEs with jumps, log transformation and BMO martingales. The efficient investment-reinsurance strategy and efficient mean-variance frontier are explicitly given through the solutions of the SREs, which are shown to be a linear feedback form of the wealth process and a half-line, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.