Abstract

In this paper, we present a novel approach for predicting pedestrian crowd dynamics over longer time horizons (30s). In dense environments over long time horizons, the number of pedestrian interactions is high, leading to the degradation of traditional pedestrian trajectory estimation techniques. Alternatively, we consider the macroscopic properties of the crowd as a whole, focusing on the flow of density. This approach benefits from not considering pedestrians individually, and can probabilistically estimate the existence of previously unobserved individuals. We propose a novel approach to imposing a physical constraint on the crowd density flow. Initially, a coarse resolution prediction is generated by a Convolutional Recurrent Neural Network (ConvRNN), and subsequently smoothly interpolated by a Gaussian Process (GP). Using the linearity properties of GPs, a continuous representation of the crowd is produced that complies with both the ConvRNN's prediction and a conservation of density constraint. The approach is trained and analysed on the dense ATC dataset, where we show the advantages of the approach and the improvements from our contributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.