Abstract

Many control tasks can be formulated as tracking problems of a known or unknown reference signal. examples are motion compensation in collaborative robotics, the synchronisation of oscillations for power systems or the reference tracking of recipes in chemical process operation. Both the tracking performance and the stability of the closed-loop system depend strongly on two factors: Firstly, they depend on whether the future reference signal required for tracking is known, and secondly, whether the system can track the reference at all. This paper shows how to use machine learning, i.e. Gaussian processes, to learn a reference from (noisy) data while guaranteeing trackability of the modified desired reference predictions within the framework of model predictive control. Guarantees are provided by adjusting the hyperparameters via a constrained optimisation. Two specific scenarios, i.e. asymptotically constant and periodic REFERENCES, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.