Abstract
Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration.
Highlights
Type I interferons are key mediators of both innate and adaptive immune responses [1,2,3], including inhibition of viral replication [4,5]
A band at 76 kDa was observed using an anti-MAVS antibody. This corresponded to the theoretical weight of ΔLMP1-MAVS (75.3 kDa)
ΔLMP1-MAVS gave a mean 36-fold induction of IFN-β, compared to ΔRIG-I that gave a mean 5-fold induction, suggesting that ΔLMP1-MAVS is a superior inducer of high levels of type I interferon
Summary
Type I interferons are key mediators of both innate and adaptive immune responses [1,2,3], including inhibition of viral replication [4,5]. Type I interferons are used in the PLOS ONE | DOI:10.1371/journal.pone.0148929. Constitutive MAVS Inhibits HIV-1 Replication no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have