Abstract
Exposure to elevated temperatures leads to the deterioration of the mechanical properties of cementitious materials. However, the inclusion of fibers can mitigate, to some extent, the negative effects of high temperatures on these materials. Specifically, polypropylene (PP) fibers, a synthetic fiber type, have been demonstrated to improve the performance of cement-based composites. Therefore, it is essential to investigate the impact of temperature on the behavior of fiber-reinforced mortar for its broader application in construction. This study explores the effects of varying PP fiber contents (0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1%) and different temperature exposures (25 °C, 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C) on the performance of cement mortar. The experimental results show that elevated temperatures significantly degrade both the mechanical and thermal properties of fiber-reinforced mortar. As the temperature and fiber content increase, both the quality and thermal conductivity of the mortar decrease. Between 25 °C and 200 °C, the incorporation of PP fibers (ranging from 0% to 0.2%) significantly enhances the compressive and flexural strengths of the mortar. However, this improvement becomes less pronounced as the fiber content exceeds 0.2%. At temperatures above 200 °C, further increases in temperature, coupled with higher fiber contents, consistently lead to a reduction in the compressive and flexural strengths. Based on the principles of continuous damage mechanics (which describes the degradation and fracture of materials under loading) and the dual-parameter Weibull distribution theory, a constitutive model is proposed to describe the damage behavior of high-temperature PP-fiber-reinforced mortar under uniaxial compressive stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have