Abstract

The relationship between the coefficient of friction and pH value or protein constituents of lubricating fluid, together with viscosity, were studied within a bearing surface model for artificial joint, ultra-high molecular weight polyethylene (UHMWPE) against stainless steel (SUS), using a mechanical spectrometer. Four lubricants were tested in this study: sodium hyaluronate (HA), HA with albumin, HA with γ-globulin, and HA with l α-dipalmitoyl phosphatidylcholine ( l α-DPPC). The coefficient of friction between UHMWPE and SUS in HA with albumin or HA with γ-globulin varied from 0.035 to 0.070 depending on angular velocity and pH. The coefficient of friction in HA or HA with l α-DPPC varied from 0.023 to 0.045 depending on angular velocity and pH. The variation in pH for HA with albumin had a large effect on the coefficient of friction at low range of angular velocity with viscosity independence. The variation in pH for HA with γ-globulin had a large effect on the coefficient of friction with viscosity dependence at high angular velocity. The addition of l α-DPPC showed a small effect on the coefficient of friction at low angular velocity. This study confirms that the presence of albumin in the lubricant promotes pH dependence and viscosity independence of the tribological properties at low speed while the presence of globulin promotes pH and viscosity independence at low speed and promotes pH and viscosity dependence at high speed in the lubrication of UHMWPE against SUS. This study supports the clinical hypothesis that the effect of constituents and pH changes in periprosthetic fluid for the lubrication is a clue toward resolving many complications after total joint replacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.