Abstract
The amount of data generated by ultraspectral sounders is so large that considerable savings in data storage and transmission bandwidth can be achieved using data compression. Due to this large amount of data, the data compression time is of utmost importance. Increasing the programmability of the commodity Graphics Processing Units (GPUs) offer potential for considerable increases in computation speeds in applications that are data parallel. In our experiments, we implemented a spectral image data compression method called Linear Prediction with Constant Coefficients (LP-CC) using NVIDIA's CUDA parallel computing architecture. LP-CC compression method represents a current state-of-the-art technique in lossless compression of ultraspectral sounder data. The method showed an average compression ratio of 3.39 when applied to publicly available NASA AIRS data. We achieved a speed-up of 86 compared to a single threaded CPU version. Thus, the commodity GPU was able to significantly decrease the computational time of a compression algorithm based on a constant coefficient linear prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.