Abstract

We investigate the stability of pentacene thin-film transistors using a poly(4-vinylphenol) (PVP) gate dielectric under constant bias stress. The threshold voltage is shifted to the positive gate voltage when stressed in air, as caused by water vapors in the PVP gate dielectric. Meanwhile, we observe a negative shift under stress in vacuum. This shift is attributed to charges trapped in deep electronic states in pentacene near the gate interface. We propose a model for the negative shift of the threshold voltage and extract the hole concentration 4.5 x 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> that is needed to avoid the critical degradation, resulting in a W/L larger than 40.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.