Abstract
In densely populated communities, such as coral reefs, organisms can modify the physical and chemical environment for neighbouring individuals. We tested the hypothesis that colony density (12 colonies each placed ∼0.5 cm apart versus ∼8 cm apart) can modulate the physiological response (measured through rates of calcification, photosynthesis and respiration in the light and dark) of the coral Pocillopora verrucosa to partial pressure of CO2 (PCO2 ) treatments (∼400 μatm and ∼1200 μatm) by altering the seawater flow regimes experienced by colonies placed in aggregations within a flume at a single flow speed. While light calcification decreased 20% under elevated versus ambient PCO2 for colonies in low-density aggregations, light calcification of high-density aggregations increased 23% at elevated versus ambient PCO2 As a result, densely aggregated corals maintained calcification rates over 24 h that were comparable to those maintained under ambient PCO2 , despite a 45% decrease in dark calcification at elevated versus ambient PCO2 Additionally, densely aggregated corals experienced reduced flow speeds and higher seawater retention times between colonies owing to the formation of eddies. These results support recent indications that neighbouring organisms, such as the conspecific coral colonies in the present example, can create small-scale refugia from the negative effects of ocean acidification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.