Abstract

The feasibility of adding sulfidated nanoscale zero-valent iron (S-nZVI) into anaerobic systems to improve anaerobic digestion of food waste (FW) under ammonia stress was evaluated in this study. The addition of S-nZVI improved the methane production compared to nanoscale zero-valent iron (nZVI), indicating that sulfidation significantly reinforced the enhancement effect of nZVI in consolidating the hydrogenotrophic methanogenesis. The promoted methanogenic performance was associated with chemical reaction and variances of microbial community induced by S-nZVI. With the characteristics of generation of Fe2+ and slow-release of H2, S-nZVI made the anaerobic system respond positively in facilitating extracellular polymeric substances secretion and optimizing the microbial community structure. Moreover, microbial community analysis showed that S-nZVI addition enriched the species related to biohydrogen production (e.g., Prevotella) and ammonia-tolerant hydrogenotrophic methanogenesis (e.g., Methanoculleus), possibly enhancing the hydrogenotrophic methanogenesis pathway to accelerate methane production. Therefore, adding S-nZVI into the anaerobic systems might propose a feasible engineering strategy to improve the methanogenic performance of the anaerobic digestion of FW upon ammonia stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call