Abstract

The modelling of real world objects is not a straightforward subject. There are many different schemes; constructive solid geometry (CSG), cell decomposition, boundary representation, etcetera. Obviously, somehow, any scheme will be related to any other since they have a common goal. The paper shows how to model general polyhedra as an unordered discrete and finite set of geometric numbers of a projective Clifford Algebra or Geometric Algebra (GA). Clearly, not any randomly generated finite set of geometric numbers will have the structure of an object, this set must have some well defined properties. The topological properties extracted from this set are mapped to a boundary representation scheme based on a type of combinatorial map called generalised map or n-gmap. The n-gmaps have different types of orbits (in the mathematical sense) to which an attribute can be attached. When the attribute has a geometrical meaning, it is said that it is the geometrical embedding of the n-gmap. In this way the n-gmap holds explicitly the topology or structure already defined by the discrete geometry. In our proposal, each single element of a n-gmap is consistently embedded into a geometrical number also known as multi-vector. The scheme has been implemented by modifying an open source code [46] of n-gmaps. This representation has interesting properties. GA and n-gmaps complement and reinforce each other. For instance; it improves the robustness when computing the structure from the geometrical information. It is capable of computing lengths, areas and volumes of any polyhedral complex (with or without holes) using the orbits of the n-gmap (some examples are given). Finally the paper gives hints about other potentialities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.