Abstract

The vertical patterns of soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry are still controversial, and relative contribution of their controlling factors also is rarely understood for the whole soil profile. This study aimed to assess the vertical variation of both C/N, N/P, C/P ratios and their determining factors along soil profiles in subalpine forests of the eastern Tibetan Plateau. Soil samples at five depths (0–10, 10–20, 20–30, 30–50, and 50–100 cm) were collected from 132 forest sites to evaluate the vertical distribution of soil C/N, N/P, and C/P ratios. Eleven relevant environmental factors (e.g., altitude, latitude, longitude, soil pH, soil bulk density, relative stone contents, soil order, slope, position, forest type, and dominant tree species) were measured to examine their relative contribution on stoichiometric ratios within each soil layer using boosted regression tree (BRT) analysis. Soil C/N, N/P, and C/P ratios consistently decreased with increasing soil depth. BRT models accurately predicted the soil C/N, N/P, and C/P ratios in the upper four layers (R 2 = 49–97 %). For soil C/N and N/P ratios, altitude associated with latitude had the highest contribution across five soil layers, while the contributions of soil pH and bulk density were significant within soil layers closer to the surface. Independently, soil bulk density and altitude were the most important factors of C/P ratios in 0–30- and 30–100-cm soil layers. This study indicated that soil C/N/P stoichiometric ratios, and the relative importance of their controlling factors, shifted within soil profiles across Tibetan Plateau forests. Further research will be needed to understand the regulatory mechanism of soil stoichiometry and biogeochemistry in response to environmental change at whole soil profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call