Abstract

Estimation of vibration characteristics and thus the seismic loads acted on steel framed structures are influenced by the presence of semi-rigid connections and accurate modeling of shear deformations and rotary inertia effects. This paper presents a finite element model that takes into account all these effects in order to calculate consistent stiffness and mass matrices. The formulation of the element utilizes three-fields Hu-Washizu-Barr principle, where the need for displacement shape function approximation is eliminated through the use of force-based approach. The proposed model does not require extra discretization to capture localized connection response. An accurate shear correction coefficient for I-shaped steel sections is implemented to represent shear deformation and rotary inertia along steel beams and columns. Numerical examples on single member, portal frame and multi-story steel framed structures verify the accuracy and robustness of the proposed element with and without semi-rigid connections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.