Abstract

In this paper, the large amplitude free vibration of a doubly clamped microbeam is considered. The effects of shear deformation and rotary inertia on the large amplitude vibration of the microbeam are investigated. To this end, first Hamilton’s principle is used in deriving the partial differential equation of the microbeam response under the mentioned conditions. Then, implementing the Galerkin’s method the partial differential equation is converted to an ordinary nonlinear differential equation. Finally, the method of multiple scales is used to determine a second-order perturbation solution for the obtained ODE. The results show that nonlinearity acts in the direction of increasing the natural frequency of the doubly clamped microbeam. Shear deformation and rotary inertia have significant effects on the large amplitude vibration of thick and short microbeams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.