Abstract

In the Bayesian approach to parametric model comparison, the use of improper priors is problematic due to the indeterminacy of the resulting Bayes factor (BF). The need for developing automatic and robust methods for model comparison has led to the introduction of alternative BFs. Intrinsic Bayes factors (Berger and Pericchi, 1996a) and fractional Bayes factors (FBF) (O'Hagan, 1995) are two alternative strategies for default model selection. We show in this paper that the FBF can be inconsistent. To overcome this problem, we propose a generalization of the FBF approach that leads to the usual FBF or to some variants of it in some special cases. As an important problem, we consider and discuss this generalization for model selection in nested linear models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.