Abstract

Quantitative evaluations of the aromaticity (antiaromaticity) of neutral exocyclic substituted cyclopropenes (HC)(2)C=X (X = BH to InH (group 13), CH(2) to SnH(2) (group 14), NH to SbH (group 15), O to Te (group 16)) by their computed extra cyclic resonance energies (ECRE, via the block-localized wave function method) and by their aromatic stabilization energies (ASEs, via energy decomposition analyses) correlate satisfactorily (R(2) = 0.974). Electronegative X-based substituents increase the aromaticity of the cyclopropene rings, whereas electropositive substituents have the opposite effect. For example, (HC)(2)C=O is the most aromatic (ECRE = 10.3 kcal/mol), and (HC)(2)C=InH is the most antiaromatic (ECRE = -15.0 kcal/mol). The most refined dissected nucleus-independent chemical shift magnetic aromaticity index, NICS(0)(πzz), also agrees with both energetic indexes (R(2) = 0.968, for ECRE; R(2) = 0.974, for ASE), as do anisotropy of the induced current density plots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call