Abstract

Semi-supervised learning (SSL) has been proven beneficial for mitigating the issue of limited labeled data, especially on volumetric medical image segmentation. Unlike previous SSL methods which focus on exploring highly confident pseudo-labels or developing consistency regularization schemes, our empirical findings suggest that differential decoder features emerge naturally when two decoders strive to generate consistent predictions. Based on the observation, we first analyze the treasure of discrepancy in learning towards consistency, under both pseudo-labeling and consistency regularization settings, and subsequently propose a novel SSL method called LeFeD, which learns the feature-level discrepancies obtained from two decoders, by feeding such information as feedback signals to the encoder. The core design of LeFeD is to enlarge the discrepancies by training differential decoders, and then learn from the differential features iteratively. We evaluate LeFeD against eight state-of-the-art (SOTA) methods on three public datasets. Experiments show LeFeD surpasses competitors without any bells and whistles, such as uncertainty estimation and strong constraints, as well as setting a new state of the art for semi-supervised medical image segmentation. Code has been released at https://github.com/maxwell0027/LeFeD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.