Abstract

More accurate multivariate load forecasting is conducive to integrated energy system planning optimization and economic operation. In this paper, based on the consideration of exogenous factors such as weather, endogenous factors are added into the prediction, and a short-term prediction model for integrated energy multivariate load based on endo-exogenous uncertainty is established using fine-tuned transfer learning. The LSTM pre-training model is first initially established using genetic algorithm and exogenous factors such as weather. Then the exogenous uncertainty of the pre-training model and the knowledge of endogenous uncertainty in the target model are combined using fine-tuned transfer learning to continuously optimize the basic parameters of the prediction model to obtain the final multivariate load prediction model. The performance of the four models is comprehensively evaluated after the historical load validation of the integrated energy system in Beijing, China. Compared with the traditional LSTM multivariate load forecasting model, the MAPE of the proposed model in this paper is reduced by 21.03 %, 13.00 %, and 24.39 % for electricity, heat, and cooling load forecasting, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.