Abstract
Accurate load forecasting can bring economic benefits and scheduling optimization. The complexity and uncertainty arising from the coupling of different energy sources in integrated energy systems pose challenges for simultaneously predicting multiple target load sequences. Existing data-driven methods for load forecasting in integrated energy systems use multi-task learning to address these challenges. When determining the input data for multi-task learning, existing research primarily relies on data correlation analysis and considers the influence of external environmental factors in terms of feature engineering. However, such feature engineering methods lack the utilization of the characteristics of multi-target sequences. In leveraging the characteristics of multi-target sequences, language generation models trained on textual logic structures and other sequence features can generate synthetic data that can even be applied to self-training to improve model performance. This provides an idea for feature engineering in data-driven time-series forecasting models. However, because time-series data are different from textual data, existing transformer-based language generation models cannot be directly applied to generating time-series data. In order to consider the characteristics of multi-target load sequences in integrated energy system load forecasting, this paper proposed a generative tractive network (GTN) model. By selectively utilizing appropriate autoregressive feature data for temporal data, this model facilitates feature mining from time-series data. This model is capable of analyzing temporal data variations, generating novel synthetic time-series data that align with the intrinsic temporal patterns of the original sequences. Moreover, the model can generate synthetic samples that closely mimic the variations in the original time series. Subsequently, through the integration of the GTN and autoregressive feature data, various prediction models are employed in case studies to affirm the effectiveness of the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.