Abstract

Since many underlying quantum algorithms include a Boolean component, synthesis of the respective circuits is often conducted by a two-stage procedure: First, a reversible circuit realizing the Boolean component is generated. Afterwards, this circuit is mapped into a respective quantum gate cascade. In addition, recent physical accomplishments have led to further issues to be considered, e.g. nearest neighbor constraints. However, due to the lack of proper metrics, these constraints usually have been addressed at the quantum circuit level only. In this paper, we present an approach that allows the consideration of nearest neighbor constraints already at the reversible circuit level. For this purpose, a recently introduced gate library is assumed for which a proper metric is proposed. By means of an optimization approach, the applicability of the proposed scheme is illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.