Abstract

The paper discusses the evolutionary computation approach to the problem of optimal synthesis of Quantum and Reversible Logic circuits. Our approach uses standard Genetic Algorithm (GA) and its relative power as compared to previous approaches comes from the encoding and the formulation of the cost and fitness functions for quantum circuits synthesis. We analyze new operators and their role in synthesis and optimization processes. Cost and fitness functions for Reversible Circuit synthesis are introduced as well as local optimizing transformations. It is also shown that our approach can be used alternatively for synthesis of either reversible or quantum circuits without a major change in the algorithm. Results are illustrated on synthesized Margolus, Toffoli, Fredkin and other gates and Entanglement Circuits. This is for the first time that several variants of these gates have been automatically synthesized from quantum primitives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.