Abstract
Composting is a waste management practice that converts organic waste into a product that can be used safely and beneficially as a bio-fertiliser and soil amendment. Non-methane volatile organic compounds (NMVOCs) from composting are known to cause damage to human health and the environment. The impact of waste management on the environment and workers is recognised as a growing environmental and public health concern. Measurements of NMVOCs emitted during composting have been carried out only in a few studies. NMVOC emissions are typically reported as a group rather than as species or speciation profiles. Recognising the need to investigate the issues associated with NMVOCs, the objective of this study is to estimate variation in life cycle assessment (LCA) results when NMVOCs are considered individual emissions compared to grouped emissions and to compare midpoint and endpoint life cycle impact assessment (LCIA) methods. In general, the ReCiPe 2016 LCIA method estimated the highest impact from the composting process in comparison to IMPACT World+ and EF 3.0 for the impact categories of ozone formation, stratospheric ozone depletion, and particulate matter formation. For ReCiPe 2016 and IMPACT World+, the NMVOC emissions were not linked to human toxicity characterisation factors, meaning that the contribution from NMVOC towards human health risks in and around composting facilities could be underestimated. Using individual NMVOCs helps to additionally estimate the impacts of composting on freshwater ecotoxicity and human carcinogenic and non-carcinogenic toxicity potential. If ecotoxicity or toxicity issues are indicated, then LCA should be accompanied by suitable risk assessment measures for the respective life cycle stage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have