Abstract

AbstractTerminal lakes are impacted by regional changes in climate. Devils Lake (DL), North Dakota, United States (U.S.), is a case in which a prolonged shift in the precipitation pattern resulted in a 10‐m water‐level rise over the past two decades, which cost over one billion U.S. dollars in mitigation. Currently, DL is 1.5 m from an uncontrolled overspill to the nearby Sheyenne River, which could lead to unprecedented environmental, social, and economic costs. Water outlets recently implemented in the lake to slow the water‐level rise and prevent an uncontrolled overspill are subject to significant concerns over the introduction of invasive species and downstream water quality. We developed a hydrological model of the DL basin using the soil and water assessment tool and analyzed DL's overspill probability using an ensemble of statistically downscaled General Circulation Model (GCM) projections of the future climate. The results indicate a significant likelihood (7.3‐20.0%) of overspill in the next few decades in the absence of outlets; some members of the GCM integration ensemble suggest an exceedance probability of over 85.0 and 95.0% for the 2020s and 2050s, respectively. Full‐capacity outlets radically reduce the probability of DL overspill and are able to partially mitigate the problem by decreasing the average lake level by approximately 1.9 and 1.5 m in the 2020s and 2050s, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call