Abstract

The Demonstration Fusion Power Reactor DEMO is the step foreseen to bridge the gap between ITER and the first commercial fusion power plant. One key element in the European work plan for DEMO is the elaboration of a conceptual design for a suitable core particle fuelling system. First considerations for such a system are presented in this contribution. Following the well-considered ITER solution, most analysis performed in this study assumes conventional pellet technology will be used for the fuelling system. However, taking advantage of the less compressed time frame for the DEMO project, several other techniques thought to bear potential for advanced fuelling performance are considered as well. In a first, basic analysis all actuation parameters at hand and their implications on the fuelling performance were considered. Tentative transport modeling of a reference scenario strongly indicates only particles deposited inside the plasma pedestal allow for efficient fuelling. Shallow edge fuelling results in an unbearable burden on the fuel cycle. Sufficiently deep particle deposition seems technically achievable, provided pellets are launched from the torus inboard at sufficient speed. All components required for a DEMO pellet system capable for high speed inboard pellet launch are already available or can be developed in due time with reasonable efforts. Furthermore, steps to integrate this solution into the EU DEMO model are taken.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.