Abstract

In this paper, we investigate the conserved charges of generally diffeomorphism invariant gravity theories with a wide variety of matter fields, particularly of the theories with multiple scalar fields and $p$-form potentials, in the context of the off-shell generalized Abbott-Deser-Tekin (ADT) formalism. We first construct a new off-shell ADT current that consists of the terms for the variation of a Killing vector and expressions of the field equations as well as the Lie derivative of a surface term with respect to the Killing vector within the framework of generally diffeomorphism invariant gravity theories involving various matter fields. After deriving the off-shell ADT potential corresponding to this current, we propose a formula of conserved charges for these theories. Next, we derive the off-shell ADT potential associated with the generic Lagrangian that describes a large range of gravity theories with a number of scalar fields and $p$-form potentials. Finally, the properties of the off-shell generalized ADT charges for the theory of Einstein gravity and the gravity theories with a single $p$-form potential are investigated by performing Kaluza-Klein dimensional reduction along a compactified direction. The results indicate that the charge contributed by all the fields in the lower-dimensional theory is equal to that of the higher-dimensional one at mathematical level with the hypothesis that the higher-dimensional spacetime allows for the existence of the compactified dimension. In order to illustrate our calculations, the mass and angular momentum for the five-dimensional rotating Kaluza-Klein black holes are explicitly evaluated as an example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call