Abstract
BackgroundFinding the amino acid mutations that affect the severity of influenza infections remains an open and challenging problem. Of special interest is better understanding how current circulating influenza strains could evolve into a new pandemic strain. Influenza proteomes from distinct viral phenotype classes were searched for class specific amino acid mutations conserved in past pandemics, using reverse engineered linear classifiers.ResultsThirty-four amino acid markers associated with host specificity and high mortality rate were found. Some markers had little impact on distinguishing the functional classes by themselves, however in combination with other mutations they improved class prediction. Pairwise combinations of influenza genomes were checked for reassortment and mutation events needed to acquire the pandemic conserved markers. Evolutionary pathways involving H1N1 human and swine strains mixed with avian strains show the potential to acquire the pandemic markers with a double reassortment and one or two amino acid mutations.ConclusionThe small mutation combinations found at multiple protein positions associated with viral phenotype indicate that surveillance tools could monitor genetic variation beyond single point mutations to track influenza strains. Finding that certain strain combinations have the potential to acquire pandemic conserved markers through a limited number of reassortment and mutation events illustrates the potential for reassortment and mutation events to lead to new circulating influenza strains.
Highlights
Finding the amino acid mutations that affect the severity of influenza infections remains an open and challenging problem
Influenza A has evolved toward host specific mechanisms of infection leading to genetic divergence between human and avian strains
Sequence divergence is so striking that single nucleotide counts are sufficient for classifying the host type for most influenza strains when analyzing whole segment or whole genome data [1]
Summary
Finding the amino acid mutations that affect the severity of influenza infections remains an open and challenging problem. Of special interest is better understanding how current circulating influenza strains could evolve into a new pandemic strain. Influenza proteomes from distinct viral phenotype classes were searched for class specific amino acid mutations conserved in past pandemics, using reverse engineered linear classifiers. Influenza A has evolved toward host specific mechanisms of infection leading to genetic divergence between human and avian strains. Sequence divergence is so striking that single nucleotide counts are sufficient for classifying the host type for most influenza strains when analyzing whole segment or whole genome data [1]. A notable exception is the H5N1 avian strain that crosses the species barrier and can lead to deadly human infection. In this study the influenza viruses from the pandemics of 1918, 1957 and 1968 with elements of avian
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have