Abstract
Using a recently developed effective field theory formalism for extreme mass ratios arXiv:2308.14832, we present a calculation of charged black hole scattering at third post-Minkowskian order. The charges and masses are kept arbitrary, and the result interpolates from the scattering of Schwarzschild to extremal charged black holes, and beyond to charged particles in electrodynamics — agreeing with previously reported results in all such limits. The computation of the radial action is neatly organized in powers of the mass ratio. The probe (0SF) contributions are readily computed by direct integration of the radial momentum, and we use the effective field theory to compute the subleading (1SF) contributions via background-field Feynman rules supplemented by an operator encoding recoil of the background. Together these contributions completely determine the conservative physics at order OG3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{O}\\left({G}^3\\right) $$\\end{document}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.