Abstract

This paper proposes a class of nonlinear systems and presents one example system to illustrate its interesting dynamics, including quasiperiodic motion and chaos. It is found that the example system is a subsystem of a non-Hamiltonian system, which has a continuous curve of equilibria with time-reversal symmetry. In this study, the dynamical evolution of the example system with three different kinds of external excitations are fully investigated by using general chaotic analysis methods such as Poincaré sections, phase portraits, Lyapunov exponents and bifurcation diagrams. Both theoretical analysis and numerical simulations show that the example system is nonconservative but has conservative chaotic flows, which are numerically verified by the sum of its Lyapunov exponents. It is also found that the example system has time-reversal symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.