Abstract

The question of protein dynamics and its relevance to function is currently a topic of great interest. Proteins are particularly dynamic at the side-chain level on the time scale of picoseconds to nanoseconds. Here, we present a comparison of NMR-monitored side-chain motion between three PDZ domains of approximately 30% sequence identity and show that the side-chain dynamics display nontrivial conservation. Methyl (2)H relaxation was carried out to determine side-chain order parameters (S(2)), which were found to be more similar than naively expected from sequence, local packing, or a combination of the two. Thus, the dynamics of a rather distant homologue appears to be an excellent predictor of a protein's side-chain dynamics and, on average, better than current structure-based methods. Fast side-chain dynamics therefore display a high level of organization associated with global fold. Beyond simple conservation, the analysis herein suggests that the pattern of side-chain flexibility has significant contributions from nonlocal elements of the PDZ fold, such as correlated motions, and that the conserved dynamics may directly support function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.