Abstract
Mazur's inequality renders statements about persistent correlations possible. We generalize it in a convenient form applicable to any set of linearly independent constants of motion. This approach is used to show rigorously that a fraction of the initial spin correlations persists indefinitely in the isotropic central spin model unless the average coupling vanishes. The central spin model describes a major mechanism of decoherence in a large class of potential realizations of quantum bits. Thus the derived results contribute significantly to the understanding of the preservation of coherence. We will show that persisting quantum correlations are not linked to the integrability of the model, but caused by a finite operator overlap with a finite set of constants of motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.