Abstract
The present paper is focused on the analysis of the one-dimensional relativistic gas dynamics equations. The studied equations are considered in Lagrangian description, making it possible to find a Lagrangian such that the relativistic gas dynamics equations can be rewritten in a variational form. Such a Lagrangian is found in the paper. Complete group analysis of the Euler–Lagrange equation is performed. The found Lagrangian and the symmetries are used to derive conservation laws in Lagrangian variables by means of Noether’s theorem. The analogs of the newly found conservation laws in Eulerian coordinates are presented as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.