Abstract
Under investigation in this paper is a fifth-order nonlinear Schrödinger equation, which describes the propagation of attosecond pulses in an optical fiber. Based on the Lax pair, infinitely-many conservation laws are derived. With the aid of auxiliary functions, bilinear forms, one-, two- and three-soliton solutions in analytic forms are generated via the Hirota method and symbolic computation. Soliton velocity varies linearly with the coefficients of the high-order terms. Head-on interaction between the bidirectional two solitons and overtaking interaction between the unidirectional two solitons as well as the bound state are depicted. For the interactions among the three solitons, two head-on and one overtaking interactions, three overtaking interactions, an interaction between a bound state and a single soliton and the bound state are displayed. Graphical analysis shows that the interactions between the two solitons are elastic, and interactions among the three solitons are pairwise elastic. Stability analysis yields the modulation instability condition for the soliton solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.