Abstract

Under investigation in this paper are the coupled higher-order nonlinear Schrödinger equations with variable coefficients, which represent the propagation of femtosecond soliton pulses comprising of two fields with the left and right polarization in the inhomogeneous optical fiber media. Infinitely-many conservation laws are obtained based on the Lax pair. Via the Hirota method and symbolic computation, bilinear forms, bilinear Bäcklund transformations, one- and two-soliton-like solutions are also derived. With different coefficients, bell-shaped, periodic-changing, quadratic-varying, exponential-decreasing and exponential-increasing soliton-like profiles are seen, to describe the propagation and interactions of the femtosecond soliton pulses. Head-on and overtaking elastic interactions are shown, which are decided by the directions of the velocities. We also get the bound states with periodic attraction and repulsion between two solitons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.