Abstract
BackgroundThe plant hormone abscisic acid (ABA) is ubiquitous among land plants where it plays an important role in plant growth and development. In seeds, ABA induces embryogenesis and seed maturation as well as seed dormancy and germination. In vegetative tissues, ABA is a necessary mediator in the triggering of many of the physiological and molecular adaptive responses of the plant to adverse environmental conditions, such as desiccation, salt and cold.ResultsIn this study, we investigated the influence of abscisic acid (ABA) on Physcomitrella patens at the level of the proteome using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots showed changes in response to ABA treatment. Among them, thirteen protein spots were down-regulated; fifty-two protein spots were up-regulated including four protein spots which were newly induced. These proteins were involved in various functions, including material and energy metabolism, defense, protein destination and storage, transcription, signal transduction, cell growth/division, transport, and cytoskeleton. Specifically, most of the up-regulated proteins functioned as molecular chaperones, transcriptional regulators, and defense proteins. Detailed analysis of these up-regulated proteins showed that ABA could trigger stress and defense responses and protect plants from oxidative damage. Otherwise, three protein kinases involved in signal pathways were up-regulated suggesting that P. patens is sensitive to exogenous ABA. The down-regulated of the Rubisco small subunit, photosystem II oxygen-evolving complex proteins and photosystem assembly protein ycf3 indicated that photosynthesis of P. patens was inhibited by ABA treatment.ConclusionProteome analysis techniques have been applied as a direct, effective, and reliable tool in differential protein expressions. Sixty-five protein spots showed differences in accumulation levels as a result of treatment with ABA. Detailed analysis these protein functions showed that physiological and molecular responses to the plant hormone ABA appear to be conserved among higher plant species and bryophytes.
Highlights
The plant hormone abscisic acid (ABA) is ubiquitous among land plants where it plays an important role in plant growth and development
Target proteins that respond to ABA can be directly involved in cellular protection or can act as transcriptional factors that link extracellular signaling to the regulation of transcription in eukaryotic cells an important part of the physiological response to ABA is achieved through gene expression and protein synthesis
Proteome profile changes in P. patens under ABA treatment Changes in the proteome profile between control and ABA treated plants suggested that exogenous ABA could trigger one or more responses in P. patens
Summary
The plant hormone abscisic acid (ABA) is ubiquitous among land plants where it plays an important role in plant growth and development. Plants undergo continuous exposure to various biotic and abiotic stresses in their natural environment. To survive under such conditions, plants activate signaling cascades that lead to the accumulation of endogenous hormones which, in turn, trigger the induction of defense responses. Mutational analyses in Arabidopsis have led to the identification of several genes that are involved in ABA signaling pathways. Proteome research has indicated that exogenous ABA can induce the synthesis of many proteins in rice seedlings. These proteins are involved in signaling pathways, transcription, cell growth and division, photosynthesis, protein synthesis and trafficking, and defense/stress-response, among others [8]. Relatively little is known regarding ABA signaling pathways in bryophytes
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have