Abstract

The ascendancy of diastolic heart failure to "epidemic" proportions has increased the use of and reliance on Doppler echocardiography as a source for diagnosis and as the preferred method for determining indexes of diastolic function (DF). Current indexes are primarily derived from shape-based features of Doppler E and A waves, such as their amplitudes, slopes, durations, and areas. Load dependence and pathologic correlates of these indexes have been considered, but DF indexes are not routinely corrected for heart rate (HR). To determine the dependence of selected Doppler-derived indexes of DF on HR, transmitral Doppler flow velocities and electrocardiograms were simultaneously recorded during supine bicycle exercise in 21 young, healthy volunteers. Standard E- and A-wave shape-based indexes (acceleration time, deceleration time [DT], peak E, peak A) were measured using triangle approximation. Velocity-time integrals (VTIs) were calculated by trapezoidal and triangular approximations. A-wave peak velocity (A) was measured conventionally, relative to baseline, and also using 2 alternative methods: A*, measured relative to the E@A velocity, and Ac, relative to the E-wave deceleration value at peak A-wave velocity. E/A was calculated conventionally and by using A* and Ac. The results showed that DF indexes derived from individual E waves are essentially HR independent. DT showed a mere 20% decrease for a 100% increase in HR. A triangular approximation for the E-wave VTI and the corrected E/Ac were found to be nearly HR independent. In conclusion, on the basis of the established continuity of cardiac output as a function of increasing HR and the observed data, Doppler-derived indexes of DF (DT, VTIs, E/Ac) can be treated as essentially HR independent only if the VTI and A-wave peak are corrected for HR as described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.