Abstract

The wide applications of nanomaterials in industry and our daily life have raised growing concerns on their toxicity to human body. Increasing evidence links the cytotoxicity of nanoparticles to the disruption of cellular signaling pathways. Here, we report a computational study on the mechanisms of the cytotoxicity of carbon nanotubes (CNTs) by investigating the direct impacts of CNTs on the functional motions of calmodulin (CaM), which is one of the most important signaling proteins in a cell, and its signaling function relies on the Ca2+ binding-coupled conformational switching. Computational simulations with a coarse-grained model showed that binding of CNTs modifies the conformational equilibrium of CaM and induces the closed-to-open conformational transition, leading to the loss of its Ca2+-sensing ability. In addition, the binding of CNTs drastically increases the calcium affinity of CaM, which may disrupt the Ca2+ homeostasis in a cell. These results suggest that the binding of hydrophobic nanotubes not only inhibits the signaling function of CaM as a calcium sensor but also renders CaM to toxic species through sequestering Ca2+ from other competing calcium-binding proteins, suggesting a new physical mechanism of the cytotoxicity of nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call