Abstract

The regulatory logic of time- and tissue-specific gene expression has mostly been dissected in the context of the smallest DNA fragments that, when isolated, recapitulate native expression in reporter assays. It is not known if the genomic sequences surrounding such fragments, often evolutionarily conserved, have any biological function or not. Using an enhancer of the even-skipped gene of Drosophila as a model, we investigate the functional significance of the genomic sequences surrounding empirically identified enhancers. A 480 bp long “minimal stripe element” is able to drive even-skipped expression in the second of seven stripes but is embedded in a larger region of 800 bp containing evolutionarily conserved binding sites for required transcription factors. To assess the overall fitness contribution made by these binding sites in the native genomic context, we employed a gene-replacement strategy in which whole-locus transgenes, capable of rescuing even-skipped- lethality to adulthood, were substituted for the native gene. The molecular phenotypes were characterized by tagging Even-skipped with a fluorescent protein and monitoring gene expression dynamics in living embryos. We used recombineering to excise the sequences surrounding the minimal enhancer and site-specific transgenesis to create co-isogenic strains differing only in their stripe 2 sequences. Remarkably, the flanking sequences were dispensable for viability, proving the sufficiency of the minimal element for biological function under normal conditions. These sequences are required for robustness to genetic and environmental perturbation instead. The mutant enhancers had measurable sex- and dose-dependent effects on viability. At the molecular level, the mutants showed a destabilization of stripe placement and improper activation of downstream genes. Finally, we demonstrate through live measurements that the peripheral sequences are required for temperature compensation. These results imply that seemingly redundant regulatory sequences beyond the minimal enhancer are necessary for robust gene expression and that “robustness” itself must be an evolved characteristic of the wild-type enhancer.

Highlights

  • The genetic code, a simple one-dimensional vector of only four symbols, is decoded for the most part by molecular machinery that adheres to a strict grammar for translating genetic information into functional molecules

  • The regulatory logic of tissue-specific gene expression is encoded by compact non-coding enhancer sequences

  • We assayed the functional impact of the peripheral sequences on development, from in vivo gene expression to adult viability, to show that they are required for optimal performance under temperature and X chromosome dosage perturbations

Read more

Summary

Introduction

The genetic code, a simple one-dimensional vector of only four symbols, is decoded for the most part by molecular machinery that adheres to a strict grammar for translating genetic information into functional molecules. The majority of functional information in a genome does not reside in its transcribed compartments, where this strict grammar applies, but rather in the vast sea of ‘‘noncoding’’ sequences specifying the regulatory logic of gene expression. For these sequences, and in particular for the cis-regulatory elements (CRE) controlling eukaryotic gene expression, originally called enhancers [1], there is as yet no general agreement about how to define, much less identify the ‘‘functional’’ unit of eukaryotic gene regulation [2,3,4,5,6]. We will refer to these experimentally defined CRE’s as ‘‘minimal’’ elements or enhancers

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.