Abstract
To address the control challenges posed by increasingly complex mission scenarios, this paper aims to develop an advanced formation control and obstacle avoidance strategy for autonomous underwater vehicles (AUVs) in SE(3). This study establishes a dynamic model for fully actuated AUVs and designs a consensus-based formation control strategy to achieve coordinated movement. Motivated by limitations of existing obstacle avoidance strategies such as local minima issues and mutual interference between formation members in high-density environments, this paper introduces a novel gyroscopic force-based obstacle avoidance method. The proposed approach leverages the principles of rotation and angular momentum conservation to enable effective obstacle avoidance while maintaining formation integrity. Simulation results demonstrate the effectiveness of the proposed methodology in achieving robust formation control and collision avoidance under challenging conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have