Abstract
Non-convex quadratically constrained quadratic programming (QCQP) problems have numerous applications in signal processing, machine learning, and wireless communications, albeit the general QCQP is NP-hard, and several interesting special cases are NP-hard as well. This paper proposes a new algorithm for general QCQP. The problem is first reformulated in consensus optimization form, to which the alternating direction method of multipliers (ADMM) can be applied. The reformulation is done in such a way that each of the sub-problems is a QCQP with only one constraint (QCQP-1), which is efficiently solvable irrespective of (non-)convexity. The core components are carefully designed to make the overall algorithm more scalable, including efficient methods for solving QCQP-1, memory efficient implementation, parallel/distributed implementation, and smart initialization. The proposed algorithm is then tested in two applications: multicast beamforming and phase retrieval. The results indicate superior performance over prior state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.