Abstract

AbstractIn this paper, the consensus problem for a class of interconnected systems with different cyber‐physical topologies is investigated. A two‐layer control framework is proposed where two different connections exist among the systems in physical and cyber layers, respectively. The former directly reflects the physical coupling among systems, while the latter uses the states' information transferred by communication channels to generate control. The physical and cyber topologies are undirected and not required to be connected. An event‐triggered protocol based on cyber local sampled information is designed with no need to solve any matrix equation or inequality. Theoretical sufficient conditions for consensus are derived in terms of algebraic inequality and Zeno behavior is excluded. A novel expandable construction scheme is proposed to construct switching topologies for cyber layer. Numerical simulation and comparison show the effectiveness of the proposed control method and the advantage on saving communication network constructions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.