Abstract

The development of advanced wireless communication technologies and smart embedded control devices makes everything connected, leading to an emerging paradigm of the Internet of Controlled Things IoCT. IoCT consists of two layers of systems: cyber layer and physical layer. This work aims to establish a holistic framework that integrates the cyber-physical layers of the IoCT through the lens of contract theory. For the cyber layer, we use a FlipIt game to capture the cloud security. We focus on two types of cloud, high-type and low-type, in terms of their provided quality of service QoS. The cloud's type is of private information which is unknown to the contract maker. Therefore, the control system administrator CSA at the physical layer needs to design a menu of two contracts for each type of service provider SP due to this asymmetric information structure. According to the received contract, SP decides his cyber defense strategy in the FlipIt game of which the Nash equilibrium determines the QoS of the cloud, and further influences the physical system performance. The objective of CSA is to minimize the payment to the cloud SP and the control cost jointly by designing optimal contracts. Due to the interdependence between the cyber and physical layers in the cloud-enabled IoCT, we need to address the cloud security and contract design problems in an integrative manner. We find that CSA always requires the best QoS from two types of cloud. In addition, under the optimal contracts, the utilities of both SPs are constants. Furthermore, no contracts will be offered to the cloud if the resulting service cannot stabilize the physical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.