Abstract

In this paper we study a discrete time consensus model on a connected graph with monotonically increasing peer-pressure and noise perturbed outputs masking a hidden state. We assume that each agent maintains a constant hidden state and a presents a dynamic output that is perturbed by random noise drawn from a mean-zero distribution. We show consensus is ensured in the limit as time goes to infinity under certain assumptions on the increasing peer-pressure term and also show that the hidden state cannot be exactly recovered even when model dynamics and outputs are known. The exact nature of the distribution is computed for a simple two vertex graph and results found are shown to generalize (empirically) to more complex graph structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call