Abstract

The motion of D2O monomers is investigated on a NaCl(100) bilayer on Ag(111) between 42.3 and 52.3 K by scanning tunneling microscopy. The diffusion distance histogram reveals a squared diffusion lattice that agrees with the primitive unit cell of the (100) surface. From the Arrhenius dependence, we derive the diffusion energy, the pre-exponential factor, and the attempt frequency. The mechanism of the motion is identified by comparison of the experimental results to theoretical calculations. Via low temperature adsorption site determination in connection with density functional theory, we reveal an influence of the metallic support onto the intermediate state of the diffusive motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.