Abstract

The Devonian/Carboniferous (D/C) transition is characterized by a major transgressive/regressive cycle which led to a widespread ocean anoxia known as the Hangenberg Black Shale Event (HBSE), as well to a major sea-level fall (Hangenberg Sandstone Event, HSSE), recognized around the world. Both events are known as the Hangenberg Crisis. In order to examine the D/C transition in shallow water environment, the Mighan section in eastern Alborz was studied in terms of conodont biostratigraphy and stable isotope geochemistry. Twenty-five conodont species belonging to seven genera were identified and 5 conodont zones discriminated; namely, the Bispathodus aculeatus aculeatus Zone, Bispathodus costatus Zone, Bispathodus ultimus Zone, Siphonodella praesulcata Zone, costatus-kockeli Interregnum, and the sulcata Zone. Below the Devonian–Carboniferous boundary (DCB), the Hangenberg Black Shale and Hangenberg Sandstone equivalents were recognized, representing the Hangenberg Crisis that highly affected trilobite, ammonoid, brachiopod and conodont faunas at Mighan and worldwide. The kockeli Zone of the latest Famennian is missing at Mighan due to the lack of conodonts, probably related with the major environmental changes linked with the Hangenberg Crisis recognizable worldwide. Carbon isotopes measured of micrites from Mighan indicate a proximal depositional environment of a shallow shelf with terrestrial input and the oxygen isotope values from conodont apatite suggest warm seawater temperatures of tropical and subtropical setting in the study area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.