Abstract

ABSTRACTIn practice, the capability of communication between each pair of agents is within a finite range. This paper investigates how to preserve connectivity for nonlinear multiagent systems while reaching consensus under event-driven control technique. By introducing an appropriate potential function based on the distance of two agents, we can demonstrate that all the agents will not lose connectivity if the initial undirected graph is connected. Furthermore, due to the existence of friction and time delay, we utilise the Young's inequality and a Lyapunov–Krasovskii functional to eliminate the negative effects of time delay. The use of impulse functions is considered which can avoid the singularity in the control input. Moreover, the hybrid event-driven and time-driven control technique is utilised to reduce the requirements of communication resources. Finally, numerical simulations are conducted to demonstrate the effectiveness of our methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.